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Abstract  
Neurogenesis in the adult hippocampus plays a major role in cognitive ability of animals including learning 
and memory. Korean red ginseng (KRG) has long been known as a medicinal herb with the potential to 
improve learning and memory; however, the mechanisms are still elusive. Therefore, we evaluated whether 
KRG can promote cognitive function and enhance neurogenesis in the hippocampus. Eight-week-old male 
C57BL/6 mice received 50 mg/kg of 5-bromo-2′-deoxyuridine (BrdU) intraperitoneally and 100 mg/kg of 
KRG or vehicle orally once a day for 14 days. Pole, Rotarod and Morris water maze tests were performed 
and the brains were collected after the last behavioral test. Changes in the numbers of BrdU- and BrdU/
doublecortin (DCX; a marker for neuronal precursor cells and immature neurons)-positive cells in the den-
tate gyrus and the gene expression of proliferating cell nuclear antigen (a marker for cell differentiation), 
cerebral dopamine neurotrophic factor and ciliary neurotrophic factor in the hippocampus were then in-
vestigated. KRG-treated mice came down the pole significantly faster and stood on the rotarod longer than 
vehicle-treated mice. The Morris water maze test showed that KRG administration enhanced the learning 
and memory abilities significantly. KRG also significantly increased BrdU- and BrdU/DCX-positive cells 
in the dentate gyrus as well as the proliferating cell nuclear antigen, cerebral dopamine neurotrophic factor 
and ciliary neurotrophic factor mRNA expression levels in the hippocampus compared to vehicle. Adminis-
tration of KRG promotes learning and memory abilities, possibly by enhancing hippocampal neurogenesis. 
This study was approved by the Pusan National University Institutional Animal Care and Use Committee 
(approval No. PNU-2016-1071) on January 19, 2016.
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Introduction 
In the dentate gyrus, new neurons are generated by under-
going developmental stages of differentiation during adult-
hood. In the subgranular zone of the dentate gyrus, adult 
neural stem cells generate intermediate progenitor cells, giv-
ing rise to neuroblasts that develop into neurons (Goncalves 
et al., 2016).

The functional significance of adult hippocampal neuro-
genesis has been demonstrated in cognitive ability including 
learning, memory, exercise and antidepressants (Sahay et al., 
2011). Newly generated neuronal cells in the adult hippo-
campus are functionally combined with the existing neuronal 
circuitry, which are positively engaged in the hippocam-
pus-dependent processes of learning and memory functions 
(Sahay et al., 2011). Recent studies have demonstrated that 
learning and memory are facilitated in mice with more new-
born neurons (Sahay et al., 2011) and the newborn neurons 
influence encoding of information (Snyder et al., 2011), while 
suppression of neurogenesis in the dentate gyrus impairs 
spatial pattern separation in mice (Clelland et al., 2009) and 

recognition memory in rats (Jessberger et al., 2009). There-
fore, it is assumed that agents enhancing neurogenesis in the 
hippocampus promote the learning and memory abilities.

Panax ginseng Meyer (ginseng), which is one of the major 
medicinal herbs grown in Korea, has been widely used for 
many centuries as a general restorative for human health 
(Oliynyk and Oh, 2013), as well as a therapeutic for treat-
ing diverse conditions including neurodegenerative disease 
(Jun et al., 2015), inflammatory disease and cancer (Ryu et 
al., 2016). Recent studies have shown that ginseng adminis-
tration improves cognitive function (Geng et al., 2010) and 
working memory (Reay et al., 2010) in healthy participants, 
hematological indices were within the normal range after 
four weeks of ginseng oral administration (Lee et al., 2012) 
and serious adverse events were not found during ginseng 
administration (Geng et al., 2010), indicating that ginseng 
can improve cognitive function with safe in humans.

The composition of ginseng can vary depending on pro-
cessing methods (Kang et al., 2006). Red ginseng is a kind of 
processed ginseng by steaming and drying, which imparts 
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newly formed pharmacological properties through heat-in-
duced chemical transformation (Park, 1996; Konoshima et 
al., 1998). Red ginseng ameliorates learning and memory 
deficits in old and young rats (Zhong et al., 2000) as well as 
in aged mice (Lee and Oh, 2015). Korean red ginseng (KRG), 
the steamed and dried root of ginseng cultivated in Korea, 
exerts significant therapeutic effects in Parkinson’s disease 
(Bach et al., 2016; Ryu et al., 2016; Kim et al., 2018) and isch-
emia (Ban et al., 2012) models. Moreover, it enhances human 
motor and cognitive function in healthy subjects (Yeo et al., 
2012), indicating that KRG can improve not only motor but 
also learning and memory functions; however, it is still not 
clear that KRG can enhance neurogenesis and regulate the 
expressions of neurogenesis-related neurotrophic factors in-
cluding cerebral dopamine neurotrophic factor (CDNF) and 
ciliary neurotrophic factor (CNTF) in the hippocampus.

Because of the correlation between neurogenesis in the 
hippocampus and the abilities of learning and memory, we 
hypothesized that KRG may enhance hippocampal neuro-
genesis that is related to the improvement of cognitive func-
tion. Therefore, we investigated whether KRG can improve 
motor and cognitive behaviors and promote neurogenesis in 
adult hippocampus of C57BL/6 mice in this study and ex-
plore the underlying mechanisms.

Materials and Methods   
Animals

This study was approved by the Pusan National University 
Institutional Animal Care and Use Committee (approval 
No. PNU-2016-1071) on January 19, 2016. Male 8-week-old 
C57BL/6 mice weighing 20–22 g were purchased from Ori-
ent Bio Inc. (Seongnam, Korea) and housed at 22 ± 2°C in 
a light-controlled environment with free access to food and 
water ad libitum. After a 7-day adjustment period, mice were 
randomly assigned to two groups (n = 9 per group): a vehi-
cle-treated group (Veh) and a 100 mg/kg KRG-treated group 
(KRG).

KRG administration and bromodeoxyuridine injection

The KRG extract was acquired from the Korea Ginseng 
Corporation (Daejeon, Korea). After a metal gavage needle 
was inserted into the esophagus of a mouse, vehicle or KRG 

extract was administered to the mouse. Mice in the KRG 
group orally received 100 mg/kg of KRG extract diluted with 
sterilized water once a day for 14 consecutive days, while 
those in the Veh group received 0.1 mL of vehicle on the 
same schedule. After all the oral administration was finished, 
all mice received intraperitoneal injection of 5-bromo-2′-de-
oxyuridine (BrdU; 50 mg/kg; Sigma, St. Louis, MO, USA) 
once a day for 14 consecutive days to detect cell mitosis. The 
entire time schedule in this study is shown in Figure 1.

Pole test

The pole test is a behavioral test for evaluating motor func-
tion. Mice (n = 6 per group) were placed on the top of a 
rough-surfaced wood pole measuring 10 mm in diameter 
and 55 cm in height, and the time taken to reach the floor 
was measured. The test was repeated three times with an in-
terval of 30 seconds and the average of the descending times 
was calculated. The test was conducted on days 0, 7 and 14.

Rotarod test

The rotarod test is used to assess motor learning as well as sen-
sorimotor coordination in rodent models (Laurer et al., 2001). 
Before the test, each mouse (n = 6 per group) was trained five 
times per day for 3 days on the rod with a constant speed of 10 
r/min. During the test session, mice were placed on the cylin-
der, and the time for which the animal stayed on the cylinder 
was measured. The constant speed (r/min) was slowly in-
creased from 4 to 40 within 5 minutes. The test was stopped if 
the mouse fell or the latency to fall reached 5 minutes. During 
the test session, each mouse was tried to three times with an 
interval of 30 minutes, and the average of the latency to fall 
was calculated. The test was performed on days 0, 4, 7 and 14.

water maze test

The Morris water maze (MWM) was conducted in a circu-
lar pool measuring 120 cm in diameter and 45 cm in height 
containing nontoxic white-colored water maintaining at 23–

25°C. A hidden white platform measuring 10 cm in diameter 
and 30 cm in height was placed in one of the quadrants with 
equal area and submerged 2 cm below the water surface. 
During the 6 subsequent days (from day 8 to 13) of training, 
the mice (n = 6 per group) were tried to three times per day 

Figure 1 Schedule of experiment. 
From day 1, the mice were orally (p.o.) administered vehicle or Korean red ginseng (KRG) and injected with 50 mg/kg of 5-bromo-2′-deoxyuridine 
(BrdU) intraperitoneally (i.p.) per day for 14 days. The pole test was performed on days 0 (1 day prior to the first administration of KRG), 7 and 14. 
The rotarod test was performed on days 0, 4, 7 and 14. The Morris water maze test was conducted from 8 to 14 days.
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with the platform in the pool. Start position was randomly 
selected and the mouse was guided to the platform if it did 
not find the platform within 90 seconds (Yin et al., 2017). 
The escape latency spent to find the platform was monitored 
during each trial session by a video tracking system using the 
S-MART 2.5 software (PanLab, Barcelona, Spain). On the 
last day (day 14), the hidden platform was removed from the 
water-maze tank and a probe test was performed. Mice were 
allowed to swim for 90 seconds and the number of platform 
location crossings, the staying time and the swimming dis-
tance in the hidden platform and the maze quadrant where 
the platform had previously been located were recorded us-
ing a video tracking system (PanLab).

Immunohistochemistry

Mice were perfused transcardially with 4% paraformalde-
hyde dissolved in 0.1 M phosphate buffer after the last be-
havioral test and their brains were harvested. Frozen sections 
were cut to a thickness of 20 μm, after which sections were 
respectively incubated with 2 N HCl at 37°C for 10 minutes, 
0.1 M boric acid at room temperature for 3 minutes and 
anti-BrdU (1:200; Abcam, Cambridge, UK) and anti-double-
cortin (DCX; 1:100; Abcam) primary antibodies overnight 
at 4°C. The sections were re-incubated at room temperature 
for 2 hours with Alexa 488-conjugated IgG (1:200; Molecular 
Probes, Eugene, OR, USA) and Alexa 568-conjugated IgG 
(1:200; Molecular Probes) secondary antibodies.

The stained sections were captured with a confocal mi-
croscope (Carl ZEISS DE/LSM700, Öberkochen, Germa-
ny). The numbers of BrdU-positive cells and BrdU/DCX 
double-labeled cells in the dentate gyrus on each capture 
were manually counted by two independent observers to 
minimize the possibility of observer bias and the counted 
value was divided by the dentate gyrus area on each cap-
ture. The average value of the counts was calculated in three 
continuous hippocampal sections. Positive cell rate was 
calculated as the average value of positive cells in the KRG 
group versus the average value of positive cells in the Veh 
group.

Real-time quantitative RT-PCR

After mice were sacrificed, the bilateral hippocampi were im-
mediately removed and frozen in liquid nitrogen. To deter-
mine the proliferating cell nuclear antigen (PCNA), CDNF 
and CNTF, the hippocampi were homogenized and real-time 
quantitative polymerase chain reaction (qPCR) analysis 
was performed. The PCR primers used in this study were 
synthesized commercially (Bioneer, Daejeon, Korea) as fol-
lows: PCNA (forward, 5′-TTTGAGGCACGCCTGATCC-3′; 
reverse, 5′-GGAGACGTGAGACGAGTCCAT-3′), CDNF 
(forward, 5′-GGTCGCTAAAATTGCAGAGC-3′; reverse, 
5′-AAGGTAGCCCAGCCCACTAT-3′), CNTF (forward, 
5′-GGGACCTCTGTAGCCGCTCTATCTG-3 ′; reverse, 
5′-GTTCCAGAAGCGCCATTAACTCCTC-3′) and glyc-
eraldehyde-3-phosphatedehydrogenase (GAPDH; forward, 
5 ′-GGCATTGCTCTCAATGGACAA-3 ′ ;  and reverse, 
5′-CCGAGGTTGGGATAGGGCC-3′). The cDNA amplifi-

cation was performed using the Maxima SYBR Green qPCR 
Master Mix (Applied Biosystems). 

Statistical analysis

The behavioral data of the pole test, the rotarod test and the 
escape latency time spent to find the hidden platform were 
expressed as the mean ± SEM and other data were expressed 
as the mean ± SD. Mann-Whitney U test was used to com-
pare behavioral data, cell counts and mRNA expression 
between groups. Prism 5 for Windows (GraphPad Software 
Inc., La Jolla, CA, USA) was used for all statistical analyses 
and P < 0.05 was considered statistically significant.

Results
Effect of KRG on motor function

In the pole test, there was no significant difference in the 
descending time between the Veh and KRG groups before 
KRG administration. However, the descending time in the 
KRG group was significantly shorter than that in the Veh 
group after 7 and 14 days of KRG administration (P < 0.05; 
Figure 2A). 

A similar tendency was observed in the rotarod test. Be-
fore KRG administration, there was no significant difference 
in the time for which the animal remained on the rotarod 
between the Veh and KRG groups. However, repeated KRG 
administrations led to a gradual increase in this time and 
there were significant differences in the time for which the 
animal remained on the rotarod between groups on days 7 
and 14 (P < 0.05; Figure 2B). 

Effects of KRG on learning and memory abilities

The MWM was employed to investigate the possible effects 
of KRG treatment on learning and memory abilities. Un-
til the 4th training day (from day 8 to day 11), there was 
no significant difference in the escape latency (time spent 
to find the hidden platform) between the Veh and KRG 
groups. However, mice in the KRG group found the plat-
form significantly faster than those in the Veh group on the 
5th and 6th training days (days 12 and 13; P < 0.05 at each 
day; Figure 3A). 

On the 7th training day (day 14), the hidden platform was 
removed and a probe test was performed. Mice in the KRG 
group crossed the platform location significantly more often 
than those in the Veh group (P < 0.05; Figure 3B). Moreover, 
mice in the KRG group stayed on the hidden platform (P < 
0.05; Figure 3C) and in the maze quadrant (P < 0.05, Figure 

3F) where the platform had previously been located longer 
than those in the Veh group. Additionally, the swimming 
distance of mice in the KRG group was significantly longer 
than that of mice in the Veh group in these locations (P < 
0.05; Figure 3C–E, G, and H).

Effects of KRG administration on cell differentiation

After 14 days of KRG treatment, the number of BrdU-posi-
tive cells in the granular cell layer was significantly increased 
in the KRG group compared with the Veh group (P < 0.05; 
Figure 4A and B), and the level of PCNA mRNA in the KRG 
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Figure 2 Behavioral 
changes in response to 
KRG based on the pole 
and rotarod tests. 
(A) Results of the pole test. 
KRG-treated mice arrived 
at the floor significantly 
faster than vehicle-treated 
mice on days 7 and 14. 
(B) Results of the rotarod 
test .  KRG-treated mice 
significantly stayed longer 
than vehicle-treated mice 
on days 7 and 14. Data are 
shown as the mean ± SEM 
(n  = 6 per group). *P  < 
0.05, vs. Veh-treated group 
(Mann-Whitney U test). 
KRG: Korean red ginseng; 
Veh: vehicle.

*
*

*

*

Figure 3 Results of the Morris water maze test. 
(A) Mice in the KRG group found the platform significantly faster than those in the Veh group on the 5th and 6th training days (on days 12 and 13). 
On the 7th day (day 14), mice in the KRG group crossed the platform location significantly more often than those in the Veh group (B). Moreover, 
mice in the KRG group stayed on the hidden platform (C) and in the quadrant (F) in which the platform had previously been located significantly 
longer than those in the Veh group. The swimming distance of mice in the KRG group was significantly longer than that of mice in the Veh group 
in the area of the hidden platform (D, E) and the maze quadrant in which the platform had been located (G, H). The escape latency spent to find 
the hidden platform are expressed as the mean ± SEM, and the remaining data are shown as the mean ± SD (n = 6 per group). *P < 0.05, vs. Veh 
group (Mann-Whitney U test). KRG: Korean red ginseng; Veh: vehicle.

group was significantly higher than that in the Veh group (P 
< 0.05; Figure 5A), suggesting that KRG can enhance cell 
proliferation in the hippocampus. Moreover, the number of 
BrdU/DCX-positive cells in the dentate gyrus of the KRG 
group was significantly increased compared with the Veh 
group (P < 0.05; Figure 4C), suggesting that KRG adminis-
tration promoted the differentiation and expansion of neu-
roblasts in the granular cell layer.

Effects of KRG administration on changes in neurotrophic 

factors in the hippocampus 

Real time qPCR analysis was performed for screening of in-

fluencing factors related to KRG administration. The results 
revealed that KRG administration increased the levels of 
CDNF (P < 0.05; Figure 5B) and CNTP (P < 0.05; Figure 5C) 
in the hippocampus, suggesting that these factors play crucial 
roles in KRG-induced neurogenesis in the hippocampus.

Discussion
The results of this study demonstrate that KRG treatment 
significantly promoted motor behaviors and cognitive 
development. Moreover, KRG treatment significantly in-
creased not only neuroblasts by enhancing cell differentia-
tion but also the expression of CDNF and CNTF mRNA in 

*

*

*

*
***

*
*
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Figure 4 Changes in neurogenesis in the dentate gyrus of the hippocampus in response to KRG.
(A) BrdU (red) and DCX (green)-specific immunohistochemical staining in the dentate gyrus. 
Scale bar: 100 μm. (B) Change in cell proliferation. KRG administration significantly increased the 
BrdU-positive cells in the dentate gyrus. (C) Change in neural stem cell differentiation. Treatment 
with KRG significantly increased the BrdU/DCX-positive cells in the dentate gyrus. Data are shown 
as the mean ± SD (n = 6 per group). *P < 0.05, vs. Veh group (Mann-Whitney U test). BrdU: 5-Bro-
mo-2′-deoxyuridine; DCX: doublecortin; KRG: Korean red ginseng; Veh: vehicle.

Figure 5 Real-time qPCR analysis of 
PCNA, CDNF and CNTF. 
Administration of Korean red ginseng 
significantly increased the relative 
mRNA levels of PCNA (A), CDNF 
(B), and CNTF (C). Data are shown as 
the mean ± SD (n = 3 per group). *P 
< 0.05, vs. Veh group (Mann-Whitney 
U test). CDNF: Cerebral dopamine 
neurotrophic factor; CNTF: ciliary 
neurotrophic factor; KRG: Korean red 
ginseng; PCNA: proliferating cell nu-
clear antigen; qPCR: quantitative poly-
merase chain reaction; Veh: vehicle.
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the hippocampus. 
Traditionally ginseng had been known to improve mental 

functions and physical performance, and actually studies 
have shown that ginseng or ginsenoside complex admin-
istration improve physical performance of healthy adults 
(Caldwell et al., 2018; Lee et al., 2018) as well as cognitive 
and memory abilities (Oliynyk and Oh, 2012). To verify 
whether ginseng improves motor function, the pole and the 
rotarod tests were performed. The pole test was developed to 
evaluate motor dysfunction in rodent models of Parkinson’s 
disease (Matsuura et al., 1997) and focal ischemia (Balkaya 
et al., 2013). The rotarod test was developed to assess the 
effect of drugs on rodent behaviors and can be used for ro-
dent models of brain diseases including Huntington’s disease 
(Dunnett and Brooks, 2018) and traumatic brain injury 
(Mouzon et al., 2012). Both tests are useful for the evaluation 
of motor function of rodents because the pole test is a useful 
tool to evaluate the mouse motor function including grasp 

and maneuver on a pole and the rotarod test is a widely used 
tool for evaluating the motor function including motor co-
ordination, grip strength, and balance of rodents (Dela Pena 
et al., 2017). In this study, KRG-treated mice arrived faster at 
the floor and remained longer on the rotarod, which indicate 
that KRG can promote motor function. 

To evaluate whether KRG enhances learning and memory 
functions, the MWM test was performed. The MWM test is 
a behavioral test generally used to investigate learning and 
memory abilities in which the mouse or rat tries to find a 
visible or invisible platform that allows the animals to avoid 
the water using several cues (Vorhees and Williams, 2006). 
In this study, KRG-treated mice found the platform faster, 
crossed the platform location more often and stayed longer 
in the hidden platform and the maze quadrant where the 
platform had been located previously than vehicle-treated 
mice, indicating that KRG enhances learning and memory 
abilities. Previous studies have reported that KRG contains 
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substances capable of improving learning and memory abili-
ties in aged mouse models (Lee and Oh, 2015), enhances the 
short term spatial working memory in an animal model of 
autism (Gonzales et al., 2016), and significantly ameliorates 
scopolamine-induced memory impairment (Dela Pena et al., 
2017), which supports the results of the present study show-
ing that KRG improves learning and memory abilities.

The hippocampus plays a crucial role in learning and 
memory abilities (Snyder et al., 2005) and the newly gener-
ated neurons in the granular cell layer of the dentate gyrus 
play a particularly important role in these abilities (Deng et 
al., 2010). Therefore, we investigated whether KRG adminis-
tration could enhance neurogenesis in the dentate gyrus and 
if the cells differentiated in response to KRG were neuro-
blasts. Oral administration of KRG increased the number of 
BrdU-positive cells and the expression of PCNA mRNA in 
the hippocampus. Moreover, the number of BrdU/DCX-pos-
itive cells increased with KRG administration. These results 
indicate that KRG administration increases neurogenesis 
and the differentiation of neuroblasts in the hippocampus 
and that the increased neuroblasts would affect learning and 
memory abilities in mice.

It is well known that ginsenosides enhance neurogenesis. 
Total saponins in ginseng enhance neurogenesis in a stroke 
animal model (Zheng et al., 2011). Moreover, ginsenoside 
Rd increased the proliferation of neuroblasts in the hippo-
campus of lead-exposed rats (Wang et al., 2013) and normal 
rats (Lin et al., 2012), while ginsenoside Rg1 was found to 
promote the cell proliferation in the hippocampus of adult 
mice (Shen and Zhang, 2004). Interestingly, Sun ginseng, 
a kind of dried and heated ginseng, has been shown to en-
hance neurogenesis in the hippocampus by promoting the 
activation of Akt and extracellular signal-regulated kinase 
(ERK) in the hippocampus of mice (Lee et al., 2013), while 
ginsenoside Rd was found to enhance neurite outgrowth of 
PC12 cells (Wu et al., 2016) and neurogenesis in cerebral 
ischemia-induced rat brains (Liu et al., 2015) via activation 
of Akt and ERK. KRG contains various ginsenosides includ-
ing Rd and Rg1; therefore, these ginsenosides may play an 
important role in the increase of KRG-induced neurogenesis 
through PI3K/Akt and ERK-dependent pathways. 

Neurotrophic and growth factors have emerged as crucial 
regulators of adult neurogenesis (Zhao et al., 2008); there-
fore, increasing neurotrophic factors can be a useful method 
for enhancing neurogenesis and improving impaired mem-
ory. In this study, CDNF and CNTF mRNA levels in the 
hippocampus were significantly increased by KRG. CDNF 
is known to protect and restore dopaminergic neurons in 
a Parkinson’s disease animal model, and CDNF injection 
in the hippocampus has been shown to promote long-term 
memory in Alzheimer’s disease mouse models and in wild-
type mice (Kemppainen et al., 2015). CNTF plays a crucial 
role in nervous system maintenance and development by in-
ducing neuronal survival and differentiation (Pasquin et al., 
2015). Additionally, CNTF enhances memory function and 
neurogenesis in the hippocampus of normal adult C57BL/6 
mice (Chohan et al., 2011). Interestingly, recent researches 

have shown that CDNF and CNTF promote PI3K-Akt sig-
naling pathway. Four hours after intrastriatal injection of 
CDNF, PI3K-Akt pathway was activated in the striatum of 
normal rats (Voutilainen et al., 2017). CNTF enhances the 
migration of corneal epithelial stem cells by Akt phosphor-
ylation (Chen et al., 2016) and intranasal injection of CNTF 
activates PI3K-Akt pathway in the brain (Alcala-Barraza et 
al., 2010). CDNF and CNTF do not activate ERK pathway 
in the brain (Purser et al., 2013; Voutilainen et al., 2017). 
Taken together, the results of this study indicate that KRG 
treatment enhances neurotrophic factors such as CDNF and 
CNTF in the hippocampus, which may enhance learning 
and memory as well as hippocampal neurogenesis through 
promoting PI3K-Akt pathway. 

Ginseng has been traditionally used for a general re-
storative for human health as well as a therapeutic agent 
for treating diverse conditions in both males and females. 
However, there is a possibility that the effect of KRG varies 
depending on gender. Ginsenosides including Rb1, Bg1 and 
Rh1 have estrogenic activity (Park et al., 2017) and Daiken-
chuto, a Kampo formula including ginseng, caused more 
pronounced changes in gut microbiota in female than in 
male mice (Miyoshi et al., 2018). Since sex difference in the 
effects of ginseng is elusive (West and Krychman, 2015), it is 
necessary to study whether the response to ginseng is differ-
ent between males and females.

In addition to this, there are some limitations in this study. 
First, the correlation between neurogenesis and motor func-
tion was not investigated. Second, the active compound in 
KRG was not studied. To clarify these, further studies will be 
conducted.

In summary, KRG administration can promote hippocam-
pal neurogenesis as well as learning and memory abilities in 
mice, indicating that KRG has the potential for use in mod-
ulation of brain plasticity and memory function in patients 
with cognitive impairment.
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